免费毕业论文--管道清灰机器人设计(一)
1. 绪 论1.1 机器人的发展综述1.1.1 机器人定义在科技界,科学家会给每一个科技术语一个明确的定义,但机器人问世已有几十年,机器人的定义仍然仁者见仁,智者见智,没有一个统一的意见。原因之一是机器人还在发展,新的机型,新的功能不断涌现。机器人涉及到了人的概念,成为一个难以回答的哲学问题。就像机器人一词最早诞生于科幻小说之中一样,人们对机器人充满了幻想。也许正是由于机器人定义的模糊,才给了人们充分的想象和创造空间。机器人主要类型: 操作型机器人:能自动控制,可重复编程,多功能,有几个自由度,可固定或运动,用于相关自动化系统中。 程控型机器人:按预先要求的顺序及条件,依次控制机器人的机械动作。 示教再现型机器人:通过引导或其它方式,先教会机器人动作,输入工作程序,机器人则自动重复进行作业。 数控型机器人:不必使机器人动作,通过数值、语言等对机器人进行示教,机器人根据示教后的信息进行作业。 感觉控制型机器人:利用传感器获取的信息控制机器人的动作。 适应控制型机器人:机器人能适应环境的变化,控制其自身的行动。 学习控制型机器人:机器人能“体会”工作的经验,具有一定的学习功能,并将所“学”的经验用于工作中。 智能机器人:以人工智能决定其行动的机器人。1.1.2 我国科学家对机器人的定义我国科学家对机器人的定义是:“机器人是一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器”。在研究和开发未知及不确定环境下作业的机器人的过程中,人们逐步认识到机器人技术的本质是感知、决策、行动和交互技术的结合。随着人们对机器人技术智能化本质认识的加深,机器人技术开始源源不断地向人类活动的各个领域渗透。结合这些领域的应用特点,人们发展了各式各样的具有感知、决策、行动和交互能力的特种机器人和各种智能机器,如移动机器人、微机器人、水下机器人、医疗机器人、军用机器人、空中空间机器人、娱乐机器人等。对不同任务和特殊环境的适应性,也是机器人与一般自动化装备的重要区别。这些机器人从外观上已远远脱离了最初仿人型机器人和工业机器人所具有的形状,更加符合各种不同应用领域的特殊要求,其功能和智能程度也大大增强,从而为机器人技术开辟出更加广阔的发展空间。 中国工程院院长宋健指出:“机器人学的进步和应用是20世纪自动控制最有说服力的成就,是当代最高意义上的自动化”。机器人技术综合了多学科的发展成果,代表了高技术的发展前沿,它在人类生活应用领域的不断扩大正引起国际上重新认识机器人技术的作用和影响。 我国的机器人专家从应用环境出发,将机器人分为两大类,即工业机器人和特种机器人。所谓工业机器人就是面向工业领域的多关节机械手或多自由度机器人。而特种机器人则是除工业机器人之外的、用于非制造业并服务于人类的各种先进机器人,包括:服务机器人、水下机器人、娱乐机器人、军用机器人、农业机器人、机器人化机器等。在特种机器人中,有些分支发展很快,有独立成体系的趋势,如服务机器人、水下机器人、军用机器人、微操作机器人等。目前,国际上的机器人学者,从应用环境出发将机器人也分为两类:制造环境下的工业机器人和非制造环境下的服务与仿人型机器人,这和我国的分类是一致的。1.1.3 机器人发展简史(引自《环球科学》2007年第二期)1920年 捷克斯洛伐克作家卡雷尔·恰佩克在他的科幻小说《罗萨姆的机器人万能公司》中,根据Robota(捷克文,原意为“劳役、苦工”)和Robotnik(波兰文,原意为“工人”),创造出“机器人”这个词。 1939年 美国纽约世博会上展出了西屋电气公司制造的家用机器人Elektro。它由电缆控制,可以行走,会说77个字,甚至可以抽烟,不过离真正干家务活还差得远。但它让人们对家用机器人的憧憬变得更加具体。 1942年 美国科幻巨匠阿西莫夫提出“机器人三定律”。虽然这只是科幻小说里的创造,但后来成为学术界默认的研发原则。 1948年 诺伯特·维纳出版《控制论》,阐述了机器中的通信和控制机能与人的神经、感觉机能的共同规律,率先提出以计算机为核心的自动化工厂。 1954年 美国人乔治·德沃尔制造出世界上第一台可编程的机器人,并注册了专利。这种机械手能按照不同的程序从事不同的工作,因此具有通用性和灵活性。 1956年 在达特茅斯会议上,马文·明斯基提出了他对智能机器的看法:智能机器“能够创建周围环境的抽象模型,如果遇到问题,能够从抽象模型中寻找解决方法”。这个定义影响到以后30年智能机器人的研究方向。 1959年 德沃尔与美国发明家约瑟夫·英格伯格联手制造出第一台工业机器人。随后,成立了世界上第一家机器人制造工厂——Unimation公司。由于英格伯格对工业机器人的研发和宣传,他也被称为“工业机器人之父”。 1962年 美国AMF公司生产出“VERSTRAN”(意思是万能搬运),与Unimation公司生产的Unimate一样成为真正商业化的工业机器人,并出口到世界各国,掀起了全世界对机器人和机器人研究的热潮。 1962年-1963年传感器的应用提高了机器人的可操作性。人们试着在机器人上安装各种各样的传感器,包括1961年恩斯特采用的触觉传感器,托莫维奇和博尼1962年在世界上最早的“灵巧手”上用到了压力传感器,而麦卡锡1963年则开始在机器人中加入视觉传感系统,并在1965年,帮助MIT推出了世界上第一个带有视觉传感器,能识别并定位积木的机器人系统。 1965年约翰·霍普金斯大学应用物理实验室研制出Beast机器人。Beast已经能通过声纳系统、光电管等装置,根据环境校正自己的位置。20世纪60年代中期开始,美国麻省理工学院、斯坦福大学、英国爱丁堡大学等陆续成立了机器人实验室。美国兴起研究第二代带传感器、“有感觉”的机器人,并向人工智能进发。 1968年 美国斯坦福研究所公布他们研发成功的机器人Shakey。它带有视觉传感器,能根据人的指令发现并抓取积木,不过控制它的计算机有一个房间那么大。Shakey可以算是世界第一台智能机器人,拉开了第三代机器人研发的序幕。 1969年 日本早稻田大学加藤一郎实验室研发出第一台以双脚走路的机器人。加藤一郎长期致力于研究仿人机器人,被誉为“仿人机器人之父”。日本专家一向以研发仿人机器人和娱乐机器人的技术见长,后来更进一步,催生出本田公司的ASIMO和索尼公司的QRIO。 1973年 世界上第一次机器人和小型计算机携手合作,就诞生了美国Cincinnati Milacron公司的机
操作臂结构如图所示:
其它主要零部件:铲斗:
传动装置:
大臂:
弹簧:
拉杆:
履带:
轮:
螺母:
箱体:
液压装置1:
液压装置2:
支撑架:
传动轴:
顶起轴:
深沟球轴承(GB/T276-1994)mm:
轴承代号 基本尺寸/mm 安装尺寸/mm 基本额动动载荷 基本额定动载荷 极限转速/(r/min) 原轴承代号d D B/kN 脂润滑 油润滑6214 70 125 24 1.5 79 116 1.5 60.8 45.0 4800 6000 214
轴承端盖:
换向装置:
管道清灰机器人总体装配图:
3. 管道清灰机器人运动学分析机器人运动学分析是研究机器人运动的几何关系、速度、加速度等。管道清灰机器人是由操作臂和移动装置组成。操作臂简化后为一平面闭环连杆机构,其上的末端操作器—铲斗的运动为平面运动。因此,对该机器人的位姿(位置和姿势)分析可简化为平面位姿分析。操作臂安装在移动装置上,在分析管道机器人的位置时,将移动装置设为一动坐标系,首先分析操作臂相对于移动装置的位置和姿势,然后分析机械手连同移动装置在定坐标系中的位置、速度、加速度,可得到机器人的位置和姿势。3.1 机器人操作臂类型选择该机器人操作臂简化后为一平面机构。按杆数划分的连杆机构中,四连杆机构结构简单,但因动臂前端须装有自重较大的框架,减少了铲斗的载重量,且影响摄像机的视线;八连杆机构结构较复杂,铲起力变化平缓;六杆机构结构较简单,容易布置,一般能较好地满足作业要求,因此在这里铲斗抬起运动采用六杆机构。按机构运动状态可将操作臂运动装置分为正转连杆和反转连杆。正转连杆机构主动构件与从动构件转向相同,如图3-1所示;反转连杆机构主动构件与从动构件转向相反,如图3-2所示。
图3-1 正转机构
图3-2反转机构
1)正转机构具有以下特点:如图3-3所示①发出最大铲起力在<0时,如图所示,即铲斗有利于地面挖掘;②在铲斗卸料时,角速度较大,易于抖落物料,但冲击较大;③作业过程中各构件不易发生干涉,工作装置易于布置在同一平面内,使杆件支撑和受力好。2)反转连杆机构:①发出最大铲起力是在>0时,且铲起力变化陡峭如图3-3所示,因此在提升铲斗时铲起力较大,适于装载重物;②铲斗卸料时,角速度小,卸料平缓;③升降动臂时较易保证铲斗平移。图3-3铲起力变化图由以上分析可以看出:正转六连杆机构结构简单,且能满足管道清灰机器人设计要求,即正转机构有利于地面挖掘,适合机器人有较大的铲灰力,工作装置易于布置在同一平面,有利于增加机器人运动稳定性,因此将管道清灰机器人操作臂工作装置设计为正转六连杆机构。3.2 铲斗转角差及卸载角分析当铲斗转角时有较大的铲起力,如图3-3左所示。机器人铲起灰物后举升到运输过程中,保证物料不撒落,主要取决于铲斗的形状,其铲斗提升状态如图3-3中所示,铲斗内灰物的重心通过铲斗底部中心线时,此时铲斗不易撒落物料。铲斗在动臂举升过程中的最高位置时,其最大卸载角状态如图3-3右所示,也就是当摇臂和旋转臂处于同一直线时,铲斗倾倒可达到最大的卸载角,同时与举升油缸的位置也有关,油缸与管道水平方向夹角越小,铲斗卸载角也越大,但需保证铲斗不能碰到管壁,方可保证卸料干净。3.3 机器人操作臂自由度机构是由若干个构件组合起来,且各构件之间具有确定的相对运动的强制运动链。在机构设计和分析时,首先要确定所给定的机构的自由度。当自由度等于主动件数时,机构具有确定的自由度。该机器人操作臂机构简图如图3-4所示。
图3-4机器人操作臂机构简图
根据切贝谢夫一克鲁伯规律,该机构的自由度为其中F:活动构件数(不包括机架):低副个数:高副个数机构有确定的运动,其自由度必须等于原动件数。因此机器人操作臂具有两个原动件,一个为举升液压缸,另一个为旋转液压缸。3.4 操作臂死点分析管道清灰机器人操作臂机构简图如图5所示。已知各杆长,当转斗油缸伸缩量为一定值时,举升油缸伸缩时,大臂为主动杆,分析此时六连杆的运动特性。设KA为x轴,由K指向A为正向,将矢量闭链AKFBA和闭链AKEDCBA向x、y轴投影,得:
其中输入角为一级坐标,、、、为二级坐标,由上式可求得矩阵表达式:
用表示与速度矩阵相对应的系数行列式,其值为:
其中、分别为闭链AKFBA和闭链AKEDCBA的传动角。若速度方程有解,刚;若速度方程无解,刚,即或,也就是或,两闭链的传动角分别为零。该位置正是六杆机构的死点,如图所示。由于转斗油缸和举升油缸不能作整周回转运动,不存在当,或时的死点位置。为避免死点的出现,设计操作臂时,应使各杆长满足下列条件:
可避免死点和运动不确定情况的出现。
机构死点位置4. 管道机器人运动机构仿真4.1 铲斗铲灰液压装置1来控制铲斗的旋转,主机通过分析计算来控制该液压装置的伸缩量,机构设计合理,在不会出现死点位置时,机构有两个摆动极限位置:分别如下图所示(1)机构运动定义如下
当收缩量最大是:
当拉伸量最大是:
铲斗举升液压装置2来实现铲斗举升,主机通过分析计算来控制该液压装置的伸缩量,机构设计合理,在不会出现死点位置时,机构有两个摆动极限位置:分别如下图所示最底点:铲斗开始铲灰
最高点:机器人移动,将灰铲走
铲斗旋转中间连接装置采用轴承连接,通过液压马达来实现轴的转动,这样机构可以减小左右抖动,防止炉灰抖落。可完成360旋转,保证完全清理炉灰。
结 论根据管道清灰技术要求,提出采用履带式管道清灰机器人设计方案,操作臂选用正转六连杆机构。分析了铲斗转角差和卸载角,给出铲斗最佳铲掘位置和卸载位置,分析了该机构的死点位置,提出避免死点的方法。从机构学的角度说明管道清灰机器人结构的合理性。为机器人的下一步研究提供了坚实的基础。1、在充分了解国内外管道机器人现状的后,提出采用履带示管道机器人的设计方案。该机器人主要有操作臂和移动机构组成。操作臂主要由铲斗、动臂、旋转前臂、旋转臂、转斗油缸及举升油缸等组成,操作臂具有2个自由度。行走机构由三个呈120度的履带轮组成,与管壁底部接触的两个呈120度的履带为固定履带,与管壁顶部接触的履带为可伸缩式的。采用这种移动装置可使机器人在管道内的砂状灰上行走增加稳定性和附着力,防止机器人陷在灰内或打滑无法前进。2、采用当前应用广泛的三维参数化造型软件Pro/E,完成了基于特征的参数化管道清灰机器人结构建模,建立了虚拟样机,真实地表达了管道清灰机器人的物理样机,为机器人的后续研究如运动学、动力学、控制等的研究奠定了基础。3、对管道清灰机器人虚拟样机的运动约束进行了分析并做出了仿真动画。
致 谢本文是在导师刘晓琴的精心指导、反复修改下完成的。三个多月以来,导师在学习上对我严格要求,热情鼓励并给了我耐心细致的指导。导师待人热情,学风严谨,思想活跃,知识渊博。她对我的论文提出了许多宝贵的建议和意见,使我澄清了不少模糊的概念和认识。没有导师平时的严格要求和悉心教诲,本文是不可能顺利完成的;而且导师开阔的视野、敏锐的洞察力、严谨的治学风范使我终生受益;她兢兢业业、不辞劳苦的工作态度,诚实做人的人生观使我敬佩。她严谨的治学态度和高尚的人格必将对我以后的学习和工作产生非常积极的影响。在此谨向刘老师表示诚挚的感谢和崇高的敬意!此外还要衷心感谢周围同学的友好合作与对本人的热情帮助!衷心感谢所有在学习上,生活中对我友情帮助和大力支持的老师和同学!
参考文献[1]林尚扬,陈善本等,焊接机器人及其应用[M].机械工业出版社,2000, 7[2]吴宗泽,罗圣国等,机械设计课程设计手册[M].3版,北京教育出版社,2006,5[3]沈为民等,水冷臂清扫监测爬壁机器人[J],机器人,1999.9 (375-378)[4]林清安,著,Pro/ENGINEER零件设计(基础篇,高级篇)[明],北京大学出版社,2000, 4[5]王诗丽,龚光辉,Pro/E与AutoCAD在机械产品结构设计中的功能比较[LJ] ,机械与电子,2003, 2[6]龚振邦汪勤息陈振华钱晋武编著,机器人机械设计[M],电子工业出版社,1995,11[7]濮良贵,纪名刚等,机械设计[M].8版,高等教育出版社,2006,5