年度进展:组合结构桥梁

[1] 蔡莉莉, 方金, 范亮, J. Fang, L. Fan, 预制-装配式组合梁剪力群钉推出试验研究, 科学技术与工程, 21 (2021) 9947-9953.

[2] Y. Hu, M. Qiu, L. Chen, R. Zhong, J. Wang, Experimental and analytical study of the shear strength and stiffness of studs embedded in high strength concrete, Engineering Structures, 236 (2021).

[3] J. Ding, J. Zhu, J. Kang, X. Wang, Experimental study on grouped stud shear connectors in precast steel- UHPC composite bridge, Engineering Structures, 242 (2021).

[4] S. Wang, Z. Fang, G. Chen, H. Jiang, S. Teng, Numerical Analysis on Shear Behavior of Grouped Head Stud Shear Connectors between Steel Girders and Precast Concrete Slabs with High-Strength Concrete-Filled Shear Pockets, Journal of Bridge Engineering, 26 (2021).

[5] Y. Huang, S. Chen, P. Gu, Static and fatigue behavior of shear stud connection embedded in UHPC, Structures, 34 (2021) 2777-2788.

[6] Q. Zhao, G. Huang, C. Xu, Y. Peng, Push-Out Behavior of Short Headed Stud Connectors in Steel-Ultra High Performance Concrete Composite Deck, KSCE Journal of Civil Engineering, 25 (2021) 2640-2650.

[7] Q. Xu, K. Lu, J. Wang, Y. Yao, Performance of large-diameter studs in thin ultra-high performance concrete slab, Structures, 34 (2021) 4936-4951.

[8] 李萌, 邵旭东, 曹君辉, 何广, 陈玉宝, 赵旭东, UHPC中短栓钉抗剪性能试验及理论分析, 中国公路学报, 34 (2021) 191-204.

[9] A.A. Dönmez, Size effect on the shear capacity of headed studs, Advances in Structural Engineering, 24 (2020) 815-826.

[10] J. Zhang, X. Hu, J. Wu, Y.M. Lim, S. Gong, R. Liu, Shear behavior of headed stud connectors in steel-MPC based high strength concrete composite beams, Engineering Structures, 249 (2021).

[11] Y. Hu, R. Zhong, M. Meloni, J. Wang, A Novel Shear Strength Prediction Approach for Headed Shear Studs Embedded in Ultrahigh-Performance Concrete, Journal of Structural Engineering, 147 (2021).

[12] Y. Zhan, S. Lu, Y. Zheng, H. Jiang, S. Xiong, Theoretical Study on the Influence of Welding Collar on the Shear Behavior of Stud Shear Connectors, KSCE Journal of Civil Engineering, 25 (2021) 1353-1368.

[13] H. Su, Q. Su, C. Xu, X. Zhang, D. Lei, Shear performance and dimension rationalization study on the rubber sleeved stud connector in continuous composite girder, Engineering Structures, 240 (2021).

[14] M. Sjaarda, J.S. West, S. Walbridge, Reliability analysis of welded stud shear connectors on simply-supported bridge girders, Canadian Journal of Civil Engineering, 48 (2021) 604-615.

[15] 石广玉, 李广耀, 基于断裂力学的钢-UHPC组合结构中栓钉的疲劳寿命评估, 长安大学学报(自然科学版), 41 (2021) 102-113.

[16] J. Xu, H. Sun, W. Chen, X. Guo, Experiment-Based Fatigue Behaviors and Damage Detection Study of Headed Shear Studs in Steel–Concrete Composite Beams, Applied Sciences, 11 (2021).

[17] X. Xu, X. Zhou, Y. Liu, Fatigue life prediction of rubber-sleeved stud shear connectors under shear load based on finite element simulation, Engineering Structures, 227 (2021).

[18] D. Wang, B. Tan, L. Wang, F. Chen, S. Xiang, Numerical Study on Stress Intensity Factors for Stud Connectors of Steel–Concrete Connection, International Journal of Steel Structures, 21 (2021) 1775-1789.

[19] K. Tian, J. Ožbolt, Concrete pry-out failure of single headed stud anchors after fire exposure: Experimental and numerical study, Engineering Structures, 232 (2021).

[20] X. Xu, D. He, S. Zeng, W. He, H. Tan, Z. Yu, Effect of concrete cracks on the corrosion of headed studs in steel and concrete composite structures, Construction and Building Materials, 293 (2021).

[21] A. Suzuki, Y. Kimura, Mechanical performance of stud connection in steel-concrete composite beam under reversed stress, Engineering Structures, 249 (2021).

[22] L.-D. Zhuang, H.-B. Chen, Y. Ma, R. Ding, Research on Whole-Process Tensile Behavior of Headed Studs in Steel–Concrete Composite Structures, International Journal of Concrete Structures and Materials, 15 (2021).

[23] F. Li, H. Gao, Y. Jiang, T. Wen, Y. Zhan, Z. Chen, D. Shen, Tensile behavior of stud connectors in high strength concrete, Advances in Structural Engineering, 24 (2021) 3677-3690.

[24] 谢剑, 亢二聪, 严加宝, 朱冠儒, E. Kang, J. Yan, G. Zhu, 低温环境下栓钉连接件抗拉拔性能研究, 建筑结构学报, 42 (2021) 386-394.

[25] 罗云标, 齐连训, 严加宝, 李忠献, L. Qi, J. Yan, Z. Li, 可拆卸组合梁剪力连接件抗剪性能数值分析, 建筑科学与工程学报, 38 (2021) 117-126.

[26] 齐连训, 罗云标, 严加宝, 林旭川, Y. Luo, J. Yan, X. Lin, 高变形能力螺栓抗剪连接件抗剪承载力理论分析与验证, 工程力学, 38 (2021) 74-82.

[27] 王宣鼎, 沈敏慧, 锺國輝, 刘界鹏, 廖岳, 靳泽中, M. Shen, G. Zhong, J. Liu, Y. Liao, Z. Jin, 大直径高强螺栓剪力件受剪性能研究, 建筑结构学报, 42 (2021) 427-434.

[28] 何余良, 周仁甫, 胡立普, 曹宗勇, 项贻强, 混杂纤维混凝土螺栓剪力键疲劳性能, 长安大学学报(自然科学版), 41 (2021) 95-105.

[29] W. Wang, X.-d. Zhang, F.-x. Ding, X.-l. Zhou, Finite Element Analysis on Shear Behavior of High-Strength Bolted Connectors under Inverse Push-Off Loading, Energies, 14 (2021).

[30] E. Tzouka, T. Karavasilis, M.M. Kashani, S. Afshan, Finite element modelling of push-out tests for novel locking nut shear connectors, Structures, 33 (2021) 1020-1032.

[31] F. Yang, Y. Liu, H. Xin, M. Veljkovic, Fracture simulation of a demountable steel-concrete bolted connector in push-out tests, Engineering Structures, 239 (2021).

[32] D. Kruszewski, A.E. Zaghi, Load transfer between thin steel plates and ultra-high performance concrete through different types of shear connectors, Engineering Structures, 227 (2021).

[33] S.M. Hosseini, F. Mashiri, O. Mirza, Parametric study of innovative bolted shear connectors using 3D finite element modelling, Journal of Constructional Steel Research, 179 (2021).

[34] A. Ataei, M. Zeynalian, A study on structural performance of deconstructable bolted shear connectors in composite beams, Structures, 29 (2021) 519-533.

[35] A.A. Chiniforush, A. Ataei, M.A. Bradford, Experimental study of deconstructable bolt shear connectors subjected to cyclic loading, Journal of Constructional Steel Research, 183 (2021).

[36] H. Jiang, H. Fang, J. Liu, Z. Fang, J. Zhang, Experimental investigation on shear performance of transverse angle shear connectors, Structures, 33 (2021) 2050-2060.

[37] X. Wang, Q. He, Z. An, G. Liu, X. Wen, Y. Wang, Z. Zhong, Experimental Study of Perfobond Rib Shear Connector under Lateral Force, Applied Sciences, 11 (2021).

[38] F. Wu, S. Liu, C. Xue, K. Yang, Y. Feng, H. Zhang, Experimental Study on the Mechanical Properties of Perfobond Rib Shear Connectors with Steel Fiber High Strength Concrete, Materials (Basel), 14 (2021).

[39] S. He, P. Guan, Q. Wang, Z. Fang, A. Mosallam, Investigation on structural performance of perfobond strip connector group in steel-concrete joints, Engineering Structures, 242 (2021).

[40] W. Wang, Z. Yi, B. Tian, Y. Zhang, S. Lu, Nonlinear finite element analysis of PBL shear connectors in hybrid structures, Structures, 33 (2021) 4642-4654.

[41] 黄彩萍, 游文峰, 谭金甲, 杨艳霜, 甘书宽, W. You, J. Tan, Y. Yang, S. Gan, 弯折贯穿钢筋PBL剪力键力学性能试验, 土木工程与管理学报, 38 (2021) 113-120.

[42] 刘传奇, 孔凡磊, F. Kong, 开孔板加劲型压型钢板加固混凝土界面黏结-滑移机理 科学技术与工程, 21 (2021) 3333-3338.

[43] 孔凡磊, 黄平明, 陆由付, 夏建平, 梅葵花, P. Huang, Y. Lu, J. Xia, K. Mei, PBL和PZ组合销剪力连接件承载力试验研究, 公路交通科技, 38 (2021) 79-86.

[44] F. Kong, P. Huang, B. Han, X. Wang, C. Liu, Experimental study on behavior of corrugated steel-concrete composite bridge decks with MCL shape composite dowels, Engineering Structures, 227 (2021).

[45] A. Suzuki, K. Abe, K. Suzuki, Y. Kimura, Cyclic Behavior of Perfobond-Shear Connectors Subjected to Fully Reversed Cyclic Loading, Journal of Structural Engineering, 147 (2021).

[46] Y. Liu, H. Xin, Y. Liu, Experimental and analytical study on tensile performance of perfobond connector in bridge engineering application, Structures, 29 (2021) 714-729.

[47] A. Suzuki, K. Suzuki, Y. Kimura, Ultimate shear strength of perfobond shear connectors subjected to fully reversed cyclic loading, Engineering Structures, 248 (2021).

[48] Y. Gao, C. Li, X. Wang, Z. Zhou, L. Fan, J. Heng, Shear-slip behaviour of prefabricated composite shear stud connectors in composite bridges, Engineering Structures, 240 (2021).

[49] 曾丹, 刘扬, 曹磊, Y. Liu, L. Cao, 钢-UHPC组合结构新型剪力件的抗剪性能, 浙江大学学报(工学版), 55 (2021) 1714-1724+1771.

[50] 程震宇, UHPC中MCL形组合销的抗剪性能, 中国公路学报, 34 (2021) 205-217.

[51] S.-H. Kim, T. Batbold, S.H.A. Shah, S. Yoon, O. Han, Development of Shear Resistance Formula for the Y-Type Perfobond Rib Shear Connector Considering Probabilistic Characteristics, Applied Sciences, 11 (2021).

[52] S.-H. Kim, O. Han, S. Yoon, T. Boldoo, Shear Resistance Assessment of the Y-Type Perfobond Rib Shear Connector under Repeated Loadings, Applied Sciences, 11 (2021).

[53] K. Nouri, N.H.R. Sulong, Z. Ibrahim, M. Shariati, Behaviour of Novel Stiffened Angle Shear Connectors at Ambient and Elevated Temperatures, Advanced Steel Construction, 17 (2021) 28-38.

[54] B. Maghaghi, M. Titoum, A. Mazoz, Experimental evaluation of new channel shear connector shapes, International Journal of Steel Structures, 21 (2021) 883-900.

[55] D. Arévalo, L. Hernández, C. Gómez, G. Velasteguí, E. Guaminga, R. Baquero, R. Dibujés, Structural performance of steel angle shear connectors with different orientation, Case Studies in Construction Materials, 14 (2021).

[56] M.I. Tabet-Derraz, A. Khelil, K. Hamdaoui, N. Boumechra, M. Abdallah, Experimental and numerical study of an innovative OMEGA-shaped connector for composite beams, Structures, 32 (2021) 279-297.

[57] Y. Zou, F. Qin, J. Zhou, Z. Zheng, Z. Huang, Z. Zhang, Shear behavior of a novel bearing-shear connector for prefabricated concrete decks, Construction and Building Materials, 268 (2021).

[58] Y. Yang, W. Liang, Q. Yang, Y. Cheng, Flexural behavior of web embedded steel-concrete composite beam, Engineering Structures, 240 (2021).

[59] Y. Yao, M. Yan, Z. Shi, Y. Wang, Y. Bao, Mechanical behavior of an innovative steel–concrete joint for long-span railway hybrid box girder cable-stayed bridges, Engineering Structures, 239 (2021).

[60] 施州, 姜兴洪, 高贵, 等, 高铁大跨度混合梁斜拉桥钢-混结合段受力特性分析, 桥梁建设, 51 (2021) 62-70.

[61] Y. Zou, K. Zheng, J. Zhou, Z. Zhang, X. Li, Mechanical behavior of perfobond connector group in steel–concrete joint of hybrid bridge, Structures, 30 (2021) 925-936.

[62] Y. Zhan, M. Duan, L. Zhang, C. Liu, Z. Li, R. Zhao, Study on the shear performance of adhesive shear connectors in push-out tests, Structures, 32 (2021) 2103-2117.

[63] 吴启明, 姜瑞娟, 徐添华, 等, 考虑腹板剪切变形的波形钢腹板组合箱梁剪力滞效应分析, 建筑结构学报, 42 (2021) 229-238.

[64] 冀伟, 孙斌, 白倩, 罗奎, B. Sun, Q. Bai, K. Luo, 长期荷载作用下钢-混凝土组合梁的挠度计算与分析 %J 湖南大学学报(自然科学版), 48 (2021) 51-60.

[65] 陈旭, 章胜平, 王春华, 等, 钢-混连续组合梁的徐变等温法, 公路交通科技, 38 (2021) 73-80.

[66] 谢上飞, 钢-超高性能混凝土组合梁剪力滞分析的有限梁段法_, 铁道科学与工程学报, 18 (2021) 440-449.

[67] 周茂定, 蔺鹏臻, 张元海, 基于广义位移的波形钢腹板组合箱梁有限梁段分析方法, 东南大学学报(自然科学版), 51 (2021) 747-753.

[68] 秦翱翱, 刘世忠, 冀伟, 等, 单箱双室钢底板波形钢腹板组合箱梁扭转性能分析, 东南大学学报(自然科学版), 51 (2021) 740-746.

[69] 王力, 刘世忠, 路韡, 新型波形钢腹板组合箱梁温度效应_, 浙江大学学报(工学版), 55 (2021) 675-683.

[70] 张元海, 孙成成, 波形钢腹板箱梁考虑腹板局部纵向刚度影响的扭转效应分析_, 东南大学学报(自然科学版), 51 (2021) 195-201.

[71] 吴启明, 肖玉凤, 郭宗明, 等, 单箱多室波形钢腹板组合箱梁腹板剪力分配理论, 建筑钢结构进展, 23 (2021) 61-66.

[72] K. Benyahi, Y. Bouafia, M. Oudjene, S. Barboura, M.S. Kachi, Numerical Procedure for the Three-Dimensional Nonlinear Modelling of Composite Steel–Concrete Beams, International Journal of Steel Structures, 21 (2021) 1063-1081.

[73] Z. Yang, M. Yang, X. Rong, L. Tian, Theoretical and Numerical Study on Dynamic Characteristics of Composite Trough Girder with Corrugated Steel Webs, Journal of Bridge Engineering, 26 (2021).

[74] J. Zhu, X. Guo, J. Kang, M. Duan, Y. Wang, Experimental Investigation of Flexural Behavior of Steel–UHPC Composite Beam with Waffle-Slab System, Journal of Bridge Engineering, 26 (2021).

[75] R.S. Nicoletti, A. Rossi, A.S.C. de Souza, C.H. Martins, Numerical assessment of effective width in steel-concrete composite box girder bridges with partial interaction, Engineering Structures, 239 (2021).

[76] 刘汗青, 钟琼, 霍静思, 陈俊, 预制装配式栓钉连接件钢-混凝土组合梁抗弯性能试验研究, 建筑钢结构进展, 23 (2021) 1-8.

[77] X. Xie, Y. Huang, X. Qin, A New Composite Truss Bridge and a Study on Its Dynamic Characteristics with FE and Experimental Methods, KSCE Journal of Civil Engineering, 25 (2021) 931-947.

[78] H. Du, X. Hu, D. Shi, W. Xue, Flexural Performance of Composite Beams Using High-Strength Steel and High-Strength Concrete, International Journal of Steel Structures, DOI 10.1007/s13296-021-00558-y(2021).

[79] A. Kamar, M. Lasheen, A. Shaat, A. Zaher, A. Khalil, Factors affecting slip and stress distribution of concrete slabs in composite beams, Engineering Structures, 245 (2021).

[80] A. Daou, A.R. Mahayri, Y. Daou, O. Baalbaki, M. Khatib, The Use of Shear Connectors for Enhancing the Performance of Steel–Concrete Composite Beams: Experimental and Numerical Assessment, International Journal of Steel Structures, 21 (2021) 1966-1976.

[81] 赵品, 荣学亮, 叶见曙, 陈伟, 王国安, 波形钢腹板箱梁的腹板受力性能及桥面板横向内力分析, 江苏大学学报(自然科学版), 42 (2021) 367-372.

[82] J. Dong, Y. Chen, Q. Wu, A. Hu, R. Jiang, C. Wang, Z. Tong, H. Song, T. Xu, Research on flexural behavior of composite box continuous girder with corrugated steel webs and trusses, Advances in Structural Engineering, 24 (2021) 3580-3593.

[83] W. Deng, D. Liu, Z. Peng, J. Zhang, Behavior of Cantilever Composite Girder Bridges with CSWs under Eccentric Loading, KSCE Journal of Civil Engineering, 25 (2021) 3925-3939.

[84] Y. Zhu, S. Wan, K. Shen, P. Zhou, X. Wang, Theoretical study on the nonlinear performance of single-box multi-cell composite box-girder with corrugated steel webs under pure torsion, Journal of Constructional Steel Research, 178 (2021).

[85] Y. Wang, X. Shao, X. Zhang, J. Cao, X. Zhao, S. Deng, Structural Behaviors of a Low-Profile Steel Plate-Reinforced UHPC Deck Panel with Longitudinal Ribs, Journal of Bridge Engineering, 26 (2021) 04021043.

[86] Z. Cheng, Q. Zhang, Y. Bao, P. Deng, C. Wei, M. Li, Flexural behavior of corrugated steel-UHPC composite bridge decks, Engineering Structures, 246 (2021).

[87] J.-L. Xiao, M. Zhou, J.-G. Nie, T.-Y. Yang, J.-S. Fan, Flexural behavior of steel-UHPC composite slabs with perfobond rib shear connectors, Engineering Structures, 245 (2021).

[88] F. Gara, S. Carbonari, G. Leoni, L. Dezi, Finite Elements for Higher Order Steel–Concrete Composite Beams, Applied Sciences, 11 (2021).

[89] Y. Zhou, B. Uy, J. Wang, D. Li, Z. Huang, X. Liu, Behaviour and design of stainless steel-concrete composite beams, Journal of Constructional Steel Research, 185 (2021).

[90] W. Lin, Experimental investigation on composite beams under combined negative bending and torsional moments, Advances in Structural Engineering, 24 (2020) 1456-1465.

[91] Z.M. Liu, X.J. Huo, G.M. Wang, W.Y. Ji, Test and Numerical Model of Curved Steel-Concrete Composite Box Beams under Positive Moments, Materials (Basel), 14 (2021).

[92] 陈洪伟, 贺国栋, 王甜, G. He, T. Wang, 多梁式工形截面钢混组合梁桥荷载横向分布的参数分析, 中外公路, 41 (2021) 161-165.

[93] 张天航, 张建勋, 万二帅, 大节段装配式波形钢腹板组合T梁横向分布系数研究, 郑州大学学报(工学版), 42 (2021) 105-110.

[94] M.K. Razzaq, K. Sennah, F. Ghrib, Live load distribution factors for simply-supported composite steel I-girder bridges, Journal of Constructional Steel Research, 181 (2021).

[95] F. Alsharari, A. El-Zohairy, H. Salim, A. El-Din El-Sisi, Numerical investigation of the monotonic behavior of strengthened Steel-Concrete composite girders, Engineering Structures, 246 (2021).

[96] 王花平, 考虑滑移效应的组合梁界面作用机理及形变特征 土木工程学报, 54 (2021) 41-52.

[97] 李嘉, 刘凯, 王洋, 等, 轻型组合桥面UHPC-薄面层层间非线性分析, 长安大学学报(自然科学版), 41 (2021) 56-64.

[98] V. Vigneri, C. Odenbreit, A. Romero, Numerical study on design rules for minimum degree of shear connection in propped steel–concrete composite beams, Engineering Structures, 241 (2021).

[99] F. Sadeghi, X. Zhu, J. Li, M. Rashidi, A Novel Slip Sensory System for Interfacial Condition Monitoring of Steel-Concrete Composite Bridges, Remote Sensing, 13 (2021).

[100] 周夏芳, 王志宇, 刘梓峰, 等, 波形钢腹板体外预应力组合梁...面承载力及应力分布特征研究, 建筑结构学报, 42 (2021).

[101] T. Lou, T.L. Karavasilis, B. Chen, Assessment of Second-Order Effect in Externally Prestressed Steel–Concrete Composite Beams, Journal of Bridge Engineering, 26 (2021).

[102] 尹永胜, 曹洪亮, 高华睿, 等, 塑性阶段波形钢腹板组合梁体外预应力筋应力增量研究, 工业建筑, 51 (2021) 86-89.

[103] H. Xiao, L. Luo, J. Shi, H. Jiang, Z. Wu, Stressing state analysis of multi-span continuous steel-concrete composite box girder, Engineering Structures, 246 (2021).

[104] X. Shao, G. He, X. Shen, P. Zhu, Y. Chen, Conceptual design of 1000 m scale steel-UHPFRC composite truss arch bridge, Engineering Structures, 226 (2021).

[105] S. Wang, Y. Zhang, T. Luo, Y. Liu, Elastic critical shear buckling stress of large-scale corrugated steel web used in bridge girders, Engineering Structures, 244 (2021).

[106] W. Ji, X. Liu, Analysis of the Shear Buckling Strength of Variable-Section Corrugated Steel Webs, KSCE Journal of Civil Engineering, 25 (2021) 2974-2990.

[107] M. Zhou, Y. Chen, X. Su, L. An, Mechanical performance of a beam with corrugated steel webs inspired by the forewing of Allomyrina dichotoma, Structures, 29 (2021) 741-750.

[108] 徐晨, 张乐朋, 江震, 等, 短焊钉布置对超高性能混凝土组合桥面板抗弯性能影响, 同济大学学报(自然科学版), 48 (2021) 1088-1096.

[109] Z. Hu, Y.I. Shah, S. Yu, Cracking Analysis of Pre-stressed Steel–concrete Composite Girder at Negative Moment Zone, Arabian Journal for Science and Engineering, 46 (2021) 10771-10783.

[110] 苏庆田, 邹迪升, 张龙伟, 陶仙玲, 黄超, 后结合预应力组合梁桥的混凝土预应力实效测试与分析, 同济大学学报(自然科学版), 49 (2021) 1061-1069+1058.

[111] 苏庆田, 苏航, 吴飞, 橡胶-焊钉组合连接件对钢-混组合梁受力性能影响分析 同济大学学报(自然科学版), 49 (2021) 1079-1087.

[112] 罗兵, 钢-UHPC-NC组合梁负弯矩区受力性能试验研究_, 桥梁建设, 51 (2021) 58-65.

[113] H. Wang, T. Sun, X. Shao, C. Tang, L. Yang, Static behavior of a steel-ultra high performance concrete continuous composite box girder, Structure and Infrastructure Engineering, DOI 10.1080/15732479.2021.1876739(2021) 1-18.

[114] 朱劲松, 王修策, 丁婧楠, 等, 钢-UHPC华夫板组合梁负弯矩区抗弯性能试验_, 东南大学学报(自然科学版), 51 (2021) 404-410.

[115] 王洋, 钢板条-UHPC组合桥面结构静力及疲劳试验, 中国公路学报, 34 (2021) 261-272.

[116] 王皓磊, 孙韬, 刘晓阳, 等, 钢-UHPC连续组合梁抗弯性能试验, 中国公路学报, 34 (2021) 218-233.

[117] X. Zhou, P. Men, J. Di, F. Qin, Experimental investigation of the vertical shear performance of steel–concrete composite girders under negative moment, Engineering Structures, 228 (2021).

[118] A. Nasiri, T. Shimozato, Y. Mumtaz, Experimental study on the post-cracking behavior of preflex beams under cyclic loading, Structures, 29 (2021) 1390-1403.

[119] C. Xu, H. Xiao, B. Zhang, J. Fu, H. Masuya, Fatigue behavior of steel fiber reinforced concrete composite girder under high cycle negative bending action, Engineering Structures, 241 (2021).

[120] P. Men, X. Zhou, Z. Zhang, J. Di, F. Qin, Behaviour of steel–concrete composite girders under combined negative moment and shear, Journal of Constructional Steel Research, 179 (2021).

[121] P. Men, J. Di, H. Jiang, X. Zhou, F. Qin, Web shear buckling of steel–concrete composite girders in negative-moment regions, Engineering Structures, 237 (2021).

[122] Z.-Y. Wang, X. Zhou, Z. Liu, Panting Fatigue of Trapezoidal Corrugated Steel Webs with Mixed-Mode Cracks, International Journal of Steel Structures, 21 (2021) 576-589.

[123] A.I. Hassanin, H.F. Shabaan, A.I. Elsheikh, Cyclic loading behavior on strengthened composite beams using external post-tensioning tendons (experimental study), Structures, 29 (2021) 1119-1136.

[124] F. Alsharari, A. El-Zohairy, H. Salim, A. El-Din El-Sisi, Pre-damage effect on the residual behavior of externally post-tensioned fatigued steel-concrete composite beams, Structures, 32 (2021) 578-587.

[125] C.H. Ma, P. Deng, T. Matsumoto, Fatigue analysis of a UHPFRC-OSD composite structure considering crack bridging and interfacial bond stiffness degradations, Engineering Structures, 249 (2021).

[126] B. Tu, S. Cai, J. Li, H. Liu, Fatigue assessment of a full-scale composite box-girder with corrugated-steel-webs and concrete-filled-tubular flange, Journal of Constructional Steel Research, 183 (2021).

[127] 黄继荣, 王明俊, 杨慧, 等, 基于缺口应力的波形钢腹板结构疲劳分析研究, 铁道科学与工程学报, 18 (2021) 425-431.

[128] J. Chen, H. Zhang, Q.-Q. Yu, Monotonic and fatigue behavior of steel-concrete composite beams subjected to corrosion, Structures, 34 (2021) 1973-1984.

[129] W.K. Hamid, E.P. Steinberg, I. Khoury, A.A. Semendary, K. Walsh, Thermally Induced Behavior of Paired Internally Cured Concrete and Conventional Concrete Decks in Composite Bridges, Journal of Bridge Engineering, 26 (2021).

[130] G. Zhang, C. Song, X. Li, S. He, Q. Huang, Fire Performance of Continuous Steel-Concrete Composite Bridge Girders, KSCE Journal of Civil Engineering, 25 (2021) 973-984.

[131] C. Song, G. Zhang, V. Kodur, Y. Zhang, S. He, Fire response of horizontally curved continuous composite bridge girders, Journal of Constructional Steel Research, 182 (2021).

[132] F. Zhang, J. Shen, J. Liu, Effect of encased concrete on section temperature gradient of corrugated steel web box girder, Advances in Structural Engineering, 24 (2021) 2321-2335.

[133] D. Wang, B. Tan, X. Wang, Z. Zhang, Experimental study and numerical simulation of temperature gradient effect for steel-concrete composite bridge deck, Measurement and Control, 54 (2021) 681-691.

[134] J.-S. Fan, Y.-F. Liu, C. Liu, Experiment study and refined modeling of temperature field of steel-concrete composite beam bridges, Engineering Structures, 240 (2021).

[135] L. Zhu, R.K.-L. Su, J.-X. Huo, G.-M. Wang, Test of the Long-Term Behavior of Curved Steel–Concrete Composite Box Beams: Case Study, Journal of Bridge Engineering, 26 (2021).

[136] 张丰, 颜东煌, 陈常松, D. Yan, C. Chen, 大跨度组合梁斜拉桥成桥状态参数敏感性分析 交通科学与工程, 37 (2021) 91-97.

[137] Y.-J. Zhu, J.-M. Zhu, Distortion of steel tub-girder with top flange bracing considering warping restraint effect, Journal of Constructional Steel Research, 187 (2021).

[138] M. Abo El-Khier, G. Morcous, Precast concrete deck-to-girder connection using Ultra-High Performance Concrete (UHPC) shear pockets, Engineering Structures, 248 (2021).

[139] 王德怀, 王琦, 张玉奇, Q. Wang, Y. Zhang, 超宽大跨变截面连续钢混组合梁施工方案比选, 中外公路, 41 (2021) 193-197.

[140] 录哲元, 王晓明, 赵宝俊, 等, 基于MEC-BP代理模型的...腹板连续刚构桥施工线形预测, 长安大学学报(自然科学版), 41 (2021) 53-62.

[141] 袁帅华, 段文强, 周聪, 陈宁, 波形钢腹板部分斜拉桥施工阶段剪力滞效应分析 %J 中南大学学报(自然科学版), 52 (2021) 4055-4062.

THE END
0.增大框筒的高宽比可以减小相同高度比例处的剪力滞后效应。的英文海词词典,最权威的学习词典,专业出版增大框筒的高宽比可以减小相同高度比例处的剪力滞后效应。的英文,增大框筒的高宽比可以减小相同高度比例处的剪力滞后效应。翻译,增大框筒的高宽比可以减小相同高度比例处的剪力滞后效应。英语怎么说等详细讲解。海词词典:学习变容易jvzq<84o0fodv7hp1oyfc{hj0rnqAzB'G7+B4.>G'G;&C=*C9'K7'J6':8+F9.FF';8&G@*;C'>5'N>'CD+::.J7'CK&DM*G8'GG'B9'G7+9H.FH'G:&DK*C7'K6'A<':H+F7.G2':L&G@*;D'H9'N:';2+9E.J;'CH&;A*G7'HB'J;'G8+BH.>6'G:&DN*:D'K6'J9':6+F9.>C'::&G>*:;'GB'N:':C+:D.J8'DH&;N*G7'?1'AJ'G8+:7.=:'G;&DJ*;6'K4'A5':4
1.钢筋混凝土筒中筒结构的剪力滞后效应及其抗震性能分析自1965年美国工程师Fazlur Khan设计的第一栋钢筋混凝土框筒结构—芝加哥Dewitt-Chestnut公寓大厦落成以来,简体结构因其抗侧刚度大、空间整体作用强、能充分发挥材料性能等优点而在实际工程中得到了广泛应用。但是,简体结构一个重要的受力特征仍是存在明显的剪力滞后效应,jvzquC41yy}/yjshcpmec}f0eqs/ew4fgvgjn|4fgvgjn7iqAazzrnBfgixfg/nf?[88;@8;:
2.剪力滞后俄语怎么说剪力滞后俄语翻译剪力滞后 запаздываниесрезаjvzquC41h{4iv}uep0ipo8mvon5sw8Hjkpktg}tTwuyjcw43425QYRQVDKRNGY\ESEWSPJ_W[C`/j}rn
3.两只兔子范文混凝土桥面板内的剪力流在横向传递过程中的这种滞后现象称为剪力滞后效应。剪力滞后效应使得混凝土桥面板内的实际压应力呈中间大而两边小的不均匀分布状态,因此距钢梁较远的混凝土并不能有效起到承受纵向压力的作用,如图1所示。图1中B为混凝土板宽度,Be为混凝土板等效宽度。在混凝土板截面轴向力相等的条件下,有,由此jvzquC41yy}/i€~qq0ipo8mcqyko1=>;864ivvq
4.MIDAS常见问题注意在该项中的增减系数并不是为了考虑剪力滞效应,该项一般应用于建筑结构的 剪力墙连梁的刚度折减上。 15.二期恒载的输入 ●可以在主菜单中选择荷载>压力荷载,按均布荷载输入。 16.配重的输入 ●可以按外部荷载输入,然后在模型>质量>将荷载转换为质量中将其转换为质量后, 参与结构自振周期的计算中。 jvzquC41yy}/5?5fqey/pny1fqi0f;=994:90qyon
5.张总是一家大型企业新上任的总经理,在经过调查研究后,他发出了四道指令D、边界的约束条件是发生负剪力滞的内在因素,外荷载的形式是发生负剪力滞的外部条件 点击查看答案&解析 手机看题 问答题 智慧树知到《教师口语艺术(鲁东大学)》2023章节测试答案-3 答案: A、创造性B、个体性C、鲜明性D、审美性 点击查看答案&解析 手机看题 扫码联系在线客服反馈使用问题 扫码使用找答案小程序手机搜题jvzquC41yy}/rypcq0ipo8|cpiqf1mfcp1?32
6.土工合成材料的定义范文剪力滞后理论是复合材料研究中的重要理论,其由Cox于1962年首次提出,后经过Rosen等人的发展已经成为研究复合材料纤维受力研究的重要途径。杨广庆等[3]根据加筋土与一般复合材料的相似性将土体视为基体,筋带视为纤维加强,应用修正后的剪滞理论分析了加筋挡墙筋带轴向应力分布规律,成功得解释了筋材应力抛物线分布特点。 jvzquC41yy}/i€~qq0ipo8mcqyko1;78996/j}rn
7.变截面悬臂箱梁剪力滞效应的比拟杆分析方法|科研之友研究发现:悬臂箱梁梁高和腹板厚度的变化会减弱其剪力滞效应,且剪滞效应弱化的原因在于变截面箱梁腹板内剪应力水平的降低;箱梁顶板内水平剪力流沿跨长先增大后减小的变化导致了悬臂箱梁正、负剪力滞现象,同等跨径下变高度悬臂箱梁的正剪力滞区段长度会显著增加,但其剪滞系数将明显减小;工程设计中可以通过调整箱梁jvzquC41yy}/ulmqncxnc}j0eqs0U8KIsw[r
8.翼板横向位移对箱梁剪力滞效应的影响图9 简支箱梁剪力滞附加挠度纵向分布图 表1 简支箱梁跨中截面纵向应力对比 由表1可知:考虑翼板横向位移的计算结果与有限元数值解吻合更好,进而验证了本文方法的正确性;以有限元数值解为参照,与不考虑横向位移的计算结果相比,考虑后跨中截面顶(底)板肋处的纵向应力计算精度提高了8.83%和7.92%,悬臂板端部纵向应力jvzquC41yy}/h8830ipo8ucig532;7126791:67;2=577xjvor
9.单索面宽幅矮塔斜拉桥拉索作用下主梁剪力滞效应分析矮塔斜拉桥 受力分析 剪力滞 传递角度 后浇段jvzquC41yy}/ewpk0eun0ls1Ctzjeuj1ELLEVxycn/PUMS7232672;80jvs
10.混凝土框架结构抗剪承载力提升技术研究期刊摘要:本文从混凝土框架结构的特点入手,分析传统设计方法的局限性、施工过程中常见的不确定性以及剪力滞后效应对抗剪承载力的影响.结合现有的优化对策,提出结构设计优化、新型增强材料的应用及施工质量控制等手段,以提升其抗剪承载能力. 关键词: 混凝土框架结构抗剪承载力结构设计优化增强材料施工质量控制 机标分类号: jvzquC41f0}bpofpifguc7hqo0io1yjtkqjjejq1ujodcr7247722<:
11.长安大学结构设计原理历年真题答; T型梁翼缘板的有效宽度(或计算宽度):由于剪力滞效应,翼缘上的压应力为非均匀分布,计算抗弯承载力时,以轴心抗压强度为标准,所等效出的均匀分布宽度。两种构件的确定方法相同。影响T梁翼缘板有效宽度的因素有:截面与跨径(长度)的相对尺寸、翼板厚度、支承条件等。 22、钢筋混凝土轴心受压构件中纵筋和箍筋的作用是什么?(10分) 答:纵筋的作用jvzquC41o0972mteu0tfv8iqe1?f3:6;92930qyon
12.计算宽度桥梁有效宽度计算,看看很有用!早在二十世纪初就有人进行这方面的研究,认为剪力滞后效应可能导致钢箱梁截面的严重破坏。因此工程设计人员提出了“有效宽度”的概念,即将翼缘实际宽度按某个系数或者某种规律折减为计算宽度,使折减后的宽度按初等梁理论算得的应力值和实际的峰值接近,以确保结构的安全。jvzquC41dnuh0lxfp0tfv8|gkzooa=77787:98ftvkimg8igvcomu8634877696